Stoe & Cie (1987a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (1987b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 1381-1382

2-Aminoanthraquinone

JAN JANCZAK

W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna str., 50-950 Wroław, PO Box 937, Poland

(Received 12 September 1994; accepted 20 December 1994)

Abstract

The molecule of 2-aminoanthraquinone, C14H9NO2, is nearly planar, with the non-H atoms exhibiting a mean distance of 0.022 Å from their best plane. The statistical disorder of the 2-aminoanthraquinone molecules is located around the centre of symmetry in space group $P2_1/c$. Weak intermolecular hydrogen bonds (N— $H \cdots N$ and $N \longrightarrow H \cdots O$ link the molecules into a threedimensional network.

Comment

This paper reports on the statistically disordered structure of 2-aminoanthraquinone. The planar molecules possess a centre of symmetry and have an occupancy factor of 0.5 for the randomly disordered NH₂ groups [atom H(2) is also disordered]. This accounts for the C-N bond distance of 1.222 (9) Å which is about 0.1 Å shorter than the C-N distances in other diaminoanthraquinone derivatives (Bailey & Brown, 1967a,b; Brown & Mitchell, 1982; Chippendalle, Mathias, Aujla, Harris, Packer & Say, 1983; Kashino, Senoo & Haisa, 1988). One type of molecular disorder is presented in the scheme below. The C---C and C==O bond distances are comparable to those observed in non-substituted anthraquinone (Lonsdale, Milledge & Sayed, 1966; Lonsdale, Walley & Sayed, 1966; Lonsdale, 1966; Murty, 1960; Prakash, 1967).

 (\mathbf{I})

Arrangement of molecules in the real crystals

Arrangement of molecules resulting from X-ray analysis

The crystal structure consists of the two parallel sheets of planar 2-aminoanthraquinone molecules (Fig. 2). The distance between two successive parallel planes is 3.488(6)Å, which is slightly longer than the van der Waals distance (3.4 Å) for aromatic C atoms (Pauling, 1960). The angle between the planes of two neighbouring sheets is 56.2 (5)°. The shortest intermolecular contacts between N and H, and O and H atoms are 2.36(7)

Fig. 1. View of the title compound showing the numbering scheme with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as circles of arbitrary radii. Atom H(2) has been omitted for clarity.

Fig. 2. Packing of the molecules in the unit cell shown by (a) a bc projection and (b) an ac projection.

1381

©1995 International Union of Crystallography Printed in Great Britain - all rights reserved

and 2.54 (7) Å, respectively (see dashed lines on Fig. 2). These values point to the existence of weak intermolecular interactions.

Experimental

The 2-aminoanthraquinone starting material was purchased from the Aldrich Chemical Company Inc. The red single crystals used for the X-ray measurements were obtained by heating the starting material at 473 K in an evacuated sealed glass ampoule for one day.

Crystal data

C ₁₄ H ₉ NO ₂	Cu $K\alpha$ radiation
$M_r = 223.2$	$\lambda = 1.54184 \text{ Å}$
Monoclinic	Cell parameters from 20
$P2_{1}/c$	reflections
a = 8.082 (2) Å	$\theta = 20 - 35^{\circ}$
b = 3.954(1) Å	$\mu = 0.761 \text{ mm}^{-1}$
c = 16.103 (3) Å	T = 295 K
$\beta = 98.54(3)^{\circ}$	Parallelepiped
$V = 508.9 \text{ Å}^3$	$0.50 \times 0.35 \times 0.30$ mm
<i>Z</i> = 2	Red
$D_x = 1.457 \text{ Mg m}^{-3}$	
$D_m = 1.45 \text{ Mg m}^{-3}$	

Data collection

Kuma KM-4 computer-	$R_{\rm int} = 0.0345$
controlled four-circle	$\theta_{\rm max} = 75^{\circ}$
κ -axis diffractometer	$h = -10 \rightarrow 10$
$\omega/2\theta$ scans	$k = 0 \rightarrow 5$
Absorption correction:	$l = -20 \rightarrow 20$
none	2 standard reflections
1664 measured reflections	monitored every 50
936 independent reflections	reflections
704 observed reflections	intensity decay: <1
$[F > 4\sigma(F)]$	5 5 1

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.017$
R = 0.0616	$\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$
wR = 0.0563	$\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.55	Atomic scattering factors
704 reflections	from SHELXTL/PC
103 parameters	(Sheldrick, 1990)
Weighting scheme based	(,,,
on measured e.s.d.'s	

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Ζ	U_{ea}
C(1)	0.3234 (6)	0.2508 (11)	0.5613 (2)	0.066 (2)
C(2)	0.3537 (6)	0.4057 (11)	0.6392 (3)	0.070 (2)
C(3)	0.2266 (7)	0.4433 (12)	0.6880 (3)	0.074 (2)
C(4)	0.0704 (6)	0.3259 (11)	0.6582 (2)	0.065 (2)
C(5)	0.0362 (5)	0.1671 (10)	0.5807 (3)	0.056(1)
C(6)	0.1658 (5)	0.1303 (10)	0.5316 (2)	0.055 (1)
C(7)	-0.1330 (5)	0.0377 (11)	0.5517 (2)	0.060 (1)
O(1)	-0.2444 (4)	0.0648 (9)	0.5950 (2)	0.086(1)
N(1)	0.4946 (10)	0.498 (2)	0.6688 (6)	0.067 (3)

Table 2	Selected	geometric	parameters	(Å. °)
		2001101110			

	0	1	, ,
C(1)—C(2)	1.384 (6)	C(5)—C(6)	1.411 (6)
C(1)—C(6)	1.378 (6)	C(5)—C(7)	1.470 (5)
C(2)—C(3)	1.391 (7)	C(6)—C(7 ⁱ)	1.485 (5)
C(2)—N(1)	1.222 (9)	C(7)O(1)	1.223 (5)
C(3)—C(4)	1.363 (7)	C(7)—C(6 ⁱ)	1.485 (5)
C(4)—C(5)	1.387 (5)		
C(2)—C(1)—C(6)	119.9 (4)	C(1)—C(2)—C(3)	120.9 (4)
C(1)—C(2)—N(1)	120.9 (6)	C(3) - C(2) - N(1)	118.1 (6)
C(2)—C(3)—C(4)	119.2 (4)	C(3)—C(4)—C(5)	121.4 (4)
C(4)—C(5)—C(6)	119.1 (4)	C(4)—C(5)—C(7)	119.7 (4)
C(6)—C(5)—C(7)	121.2 (3)	C(1)-C(6)-C(5)	119.6 (3)
$C(1) - C(6) - C(7^{i})$	120.1 (4)	$C(5) - C(6) - C(7^{i})$	120.3 (3)
C(5)—C(7)—O(1)	121.2 (3)	$C(5) - C(7) - C(6^{i})$	118.4 (3)
O(1)—C(7)—C(6 ⁱ)	120.4 (4)		
		<i>a</i> .	

Symmetry code: (i) -x, -y, 1 - z.

Preliminary rotation and Weissenberg photographs indicated space group $P2_1/c$. The structure was solved by direct methods. Difference maps showed maxima in positions consistent with the expected locations of the H atoms. The positional and displacement parameters of the H atoms [except those of atoms H(2), H(11) and H(12), whose temperature factors were fixed at $U = 0.12 \text{ Å}^2$] were refined.

Data collection, cell refinement and data reduction: Kuma KM-4 diffractometer software (Kuma, 1992). Structure solution and refinement, molecular graphics: *SHELXTL/PC* (Sheldrick, 1990).

The author would like to thank Professor Z. Galdecki of the Technical University of Łódź, Poland, for the opportunity to use the *SHELXTL/PC* program system in his laboratory.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1101). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

%

- Bailey, M. & Brown, C. J. (1967a). Acta Cryst. 22, 488-493.
- Bailey, M. & Brown, C. J. (1967b). Acta Cryst. 22, 493-497.
- Brown, C. J. & Mitchell, G. R. (1982). Acta Cryst. B38, 3149-3151.
- Chippendalle, A. M., Mathias, A., Aujla, R. S., Harris, R. S., Packer, K. J. & Say, B. J. (1983). *J. Chem. Soc. Perkin Trans.* 2, pp. 1357– 1361.
- Kashino, S., Senoo, K. & Haisa, M. (1988). Acta Cryst. C44, 1044– 1046.
- Kuma (1992). Kuma KM-4 User's Guide. Version 6.0. Kuma Diffraction, Wrocław, Poland.
- Lonsdale, K. (1966). Acta Cryst. 21, 5-7.
- Lonsdale, K., Milledge, H. J. & Sayed, K. E. (1966). Acta Cryst. 20, 1–13.
- Lonsdale, K., Walley, D. & Sayed, K. E. (1966). Acta Cryst. 20, 13-17.
- Murty, B. U. R. (1960). Z. Kristallogr. 113, 445-465.
- Pauling, L. (1960). The Nature of the Chemical Bond, p. 262. Ithaca: Cornell Univ. Press.
- Prakash, A. (1967). Acta Cryst. 22, 439-440.
- Sheldrick, G. M. (1990). SHELXTLIPC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.